
CAMP: Compiler Agnostic MetaProgramming, or Portable Performance at Compile Time
Thomas R. W. Scogland, scogland1@llnl.gov, Lawrence Livermore National Laboratory

https://github.com/llnl/camp

Q: Why another metaprogramming library for C++?
A: RAJA, the kernel interface, and compiler portability

for (int i = 0; i < ni; ++i) {
for (int j = 0; j < nj; ++j) {

C[j + i*nj] *= beta;
double dot = 0.0;
for (int k = 0; k < nk; ++k) {

dot += alpha * A[k + i*nk] * B[j + k*nj];
}
C[j + i*nj] = dot;

}
}

kernel< EXEC_POL >(make_tuple(RangeSegment(0, ni), RangeSegment(0, nj)),
[=] (int i, int j) {

C[j + i*nj] *= beta;
double dot = 0.0;
for (int k = 0; k < nk; ++k) {

dot += alpha * A[k + i*nk] * B[j + k*nj];
}
C[j + i*nj] = dot;

}
}

Baseline seq variant

Similar for OpenMP, CUDA, etc.

RAJA variants

Note both loops
"collapsed"

using EXEC_POL =
KernelPolicy<

For<0, loop_exec,
For<1, loop_exec,

Lambda<0>,
>

>
>;

using EXEC_POL =
KernelPolicy<

Collapse<omp_parallel_collapse_exec,
ArgList<0, 1>,

Lambda<0>,
>

>;

using EXEC_POL =
KernelPolicy<

CudaKernelAsync<
For<0, cuda_block_x_loop,

For<1, cuda_thread_x_loop,
Lambda<0>,

>
>

>
>;

Programming Model Sequential OpenMP CUDA
Speedup (TBase / TRAJA) 1.000 1.042 1.166

Sequential policy OpenMP policy CUDA policy

The kernel interface offers arbitrary loop permutations and a compile-time DSL for assembling
and synchronizing nested loop kernels. Its capabilities offer single-source performance
potability, but require substantial compile-time calculation to work, so we needed a way to not
only maintain compile-time C++, but keep it portable across all RAJA compilers and efficient on
compile times.

What is CAMP?
• A C++ metaprogramming library in the vein of
• Metal
• Brigand
• Kvasir MPL

• Provides types and templates for template-time calculation, type manipulation and control
over overload resolution through helpers for SFINAE and emulated Concepts
• Type lists: flat lists of types that can be iterated, searched, transformed and more
• Type maps: key-value type container like an associative list with lookup of a value by key
• Algorithms: transform, fold, select, apply and others

• A set of base types for use across RAJA framework and other projects built on those facilities
• Tuple: efficient cross-device tuple implementation
• Resources: a common low-level type to represent a device or context for use with other

RAJA framework projects
• The RAJA framework solution to portable, efficient compile-time primitives across compilers
• RAJA targets C++11, which lacks many common primitives, and implementations lack

efficient builtins or even implementations of basic necessities like index_sequence
• CAMP provides these, C++11 compatible and supported on all RAJA framework compilers

CHAI

RAJAUmpire

CAMP

Library/
compiler

CAMP Metal Kvasir MPL Brigand

gcc 4.9.3+ 4.7+ 4.7+ 4.8+
clang 3.8+ 3.8+ 3.5+ 3.5+
XL 2019+ ? ? ?
Intel 18+ ? ? ?
nvcc 9.1+ ? ? ?
msvc 2015+ 2017+ 2015+ 2017+

Compiler compatibility comparison Portable (compile-time) performance

• CAMP’s first concern is not performance, but keeping RAJA compile times
reasonable is important

• Approaches:
• Aliases over classes wherever possible
• Support builtins for all compilers, particularly indexing and sequences
• Significant improvement for compilers regardless of age of standard library

on the system
• Avoiding recursion wherever possible
• tuple type is recursion-free, O(1) indexing by offset and type

Usage:
Generating test combinations:

// List index types to test
using IdxTypeList = camp::list<short,

unsigned short,
int,
unsigned>;

// Resource types to test
using OMPResourceList = camp::list<camp::resource::OpenMP>;
// policies to test
using OMPForallExecPols = camp::list<RAJA::omp_parallel_for_exec,

RAJA::omp_parallel_for_simd_exec>;
// Complete cross-product of lists to instantiate full tests
using test_types =

camp::cartesian_product<IdxTypeList,
OMPResourceList,
OMPForallExecPols>;

// Passing into google test
INSTANTIATE_TYPED_TEST_SUITE_P(OMP,

ForallRangeSegmentTest, test_types);

List and map manipulation:

// find index in typelist by type
static_assert(camp::index_of<unsigned short,

IdxTypeList>::type::value == 1, "");

// index into typelist
static_assert(camp::is_same<camp::at_t<IdxTypeList, 1>,

unsigned short>::value, "");

// associative list indexing by type
using pairs = camp::list<camp::list<int, int_action>,

camp::list<char, char_action>>;
static_assert(camp::is_same<camp::at_key<pairs, char>,

char_action>::value, "");

Usage: Resources for async compute in RAJA
• As a common base component for the RAJA framework, CAMP also provides vocabulary and

resource types across the framework, including the new resource types for asynchronous
execution and low-level memory management

• These provide runtime functionality and even type-erased wrappers to make writing generic code
easier in the presence of allocators and the need for overlapping actions on a device

Conclusions and the future
• CAMP has proven to provide a portable and efficient metaprogramming experience for RAJA
• Common types and features like tuple and resources provide both convenience and power across

the suite
• There remain things to do:

• Updating to newer style of alias would reduce verbosity and make it more accessible
• Faster patterns for some constructs have been found, updates may be able to bring down

compile times even further
• Expanding resource to low level device access
• Investigate making parts of camp available in the cross-lab DESUL suite as well

double *alloc_for_test(camp::Resource r);
void check_result_and_cleanup(double *p, camp::Resource r);

// Completely agnostic to sync/async and backend
template <typename Policy>
void test(RAJA::RangeSegment rng, double *data){
// Deduce the resource type from the policy
using Res = RAJA::resources::get_resource<Policy>::type;
// Create strongly typed resource
Res r;
// Type erase for allocation routine, allows fewer template instantiations
double *test_data = alloc_for_test(r);
// Run forall with resource deps
RAJA::forall<Policy>(r, rng, [](int i) {
// logic

});
// Run kernel dependent on first
RAJA::forall<Policy>(r, rng, [](int i) {/* logic */});
// sync if necessary, check result, free
check_result_and_cleanup(test_data, r);

}

void run_tests(double *data){
// Run on OpenMP backend
test<omp_parallel_for_exec>(data);
// Run on cuda backend synchronously
test<cuda_exec<256>>(data);
// Run on cuda backend asynchronously
test<cuda_exec_async<256>>(data);

}

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC: LLNL-POST-813930

mailto:scogland1@llnl.gov

